潜热释放和初始位温扰动对锋生的影响

王亦平

侯定臣

(江苏省盐城市气象局,盐城,224001) (南京气象学院,南京,210044)

摘 要

在 Chan 和 Cho 工作的基础上,用中 α尺度位温扰动代替了原来的中 β尺度位温扰动,并且增加了一个高度函数 H(Z),模式还改变了相对湿度的分布,取了可供比较的两个试验,并运行了半地转湿大气锋生模式程序,积分一段时间后,绘出有关的物理量的等值线图,分析、比较了非绝热加热及初始位温扰动对物理量的影响。

试验结果表明:初始位温扰动为中 α 尺度比中 β 尺度更接近实际情况,对流层湿度分布不均匀,非绝热加热的 作用比初始位温扰动的影响明显些。

关键词:锋生,非绝热加热,初始位温扰动,物理量场。

1 引 言

半地转锋生模式是近年来研究大气锋生问题的 一种常用模式,它具有形式简单、物理概念明确等优 点,它较好地再现了锋区结构的主要特征,一定程度 上揭示了大气锋区形成和演变的规律。以往关于锋 生的研究,主要是干模式,即没有考虑空气中的水 汽,其中最具有代表性的是 Chan 和 Cho 的工作^[1]。 他们详细地研究了中β尺度的位温扰动与雨带的关 系,通过尺度分析和数值模拟发现,雨带可以由地面 温度场的中尺度扰动引起。在天气尺度下的一定量 级的温度中尺度扰动,由于尺度缩小所诱导的非地 转流动,水平尺度较小,其特征仅仅限制在垂直范围 内,它们是形成浅薄雨带的原因。他们在天气尺度 温度场上叠加了一个中尺度扰动,所得的温度分布, 在锋区暖侧出现了一个暖带,这与中国长江流域梅 雨锋的锋区结构相似。

尺度分析表明,在中 β 尺度,由位温扰动所诱导的温度和垂直速度扰动是有效的,强度正比于 L_m^2/D_m ,(L_m 是水平尺度, D_m 是垂直尺度),而且浅的、宽的扰动比高的、窄的扰动更有效地诱导雨带。如果一个位温扰动所对应的温度扰动是正的话,那么该位温扰动将引起上升运动,反之亦然。

本文是在 Chan 和 Cho 工作的基础上,用中 α 尺 度位温扰动代替中 β 尺度位温扰动,并且认为对流 层湿度分布是不均匀的,它们将对物理量场产生什 么样的影响,这是本次试验的目的。

2 模式概述

本文使用的模式是英国 Reading 大学二维半地 转锋生模式。三维速度场表示为:

 $U_T = -\alpha x + u \quad V_T = \alpha y + v \quad W = \omega$ 式中 $\alpha = \alpha(t)(\alpha$ 为形变量)。

模式的方程由 Hoskins 等人导出,所用的坐标 系为地转动量坐标系,即:

$$X = x + v/f \quad Z = z \quad T = t$$

式中 v 是锋线走向垂直方向的地转风。

模式通过求解关于修正的位势函数 Φ 的方程:

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\theta_0}{\rho g} \frac{f^3}{q} \frac{\partial^2 \Phi}{\partial z^2} = f^2 \tag{1}$$

及非地转流函数方程:

$$\rho \frac{\partial}{\partial z} \left(\frac{1}{\rho} \frac{\partial \psi}{\partial z} \right) + \frac{\partial}{\partial x} \left(\rho g \frac{q}{f^3 \theta_0} \frac{\partial \psi}{\partial x} \right)$$
$$= -2Q - \frac{g\rho}{f^3 \theta_0} \frac{\partial s}{\partial x}$$
(2)

来得到诊断所需的各物理量场分布。

在上面的方程中:

$$q = \frac{\zeta}{\rho} \frac{\partial \theta}{\partial z} \qquad \qquad \zeta = f/(1 - f - 1\frac{\partial v}{\partial x})$$
$$\Phi = \varphi + \frac{1}{2}v^2 \qquad \qquad u = \frac{1}{\rho} \frac{\partial \psi}{\partial z}$$

^{*} 初稿时间:2000年10月4日;修改稿时间:2001年2月12日。

$$v = \frac{1}{f} \frac{\partial \Phi}{\partial x} \qquad \omega = -\frac{1}{\rho} \frac{\zeta}{f} \frac{\partial \psi}{\partial x}$$
$$\theta = \frac{\theta_0}{g} \frac{\partial \Phi}{\partial x} \qquad \frac{d\theta}{dt} = s \qquad Q = \rho \frac{\alpha}{f} \frac{\partial v}{\partial z}$$

其中 q 是位涡, φ 是重力位势, ζ 是绝对涡度, ρ 是 假密度, θ 是位温, Q 是地转锋生强迫函数。

得到各物理量场的分布后,通过积分控制方程:

$$\frac{\mathrm{D}\theta}{\mathrm{D}t} = S \tag{3}$$

$$\frac{\mathrm{D}q}{\mathrm{D}t} = \frac{\zeta}{\rho} \frac{\partial S}{\partial z} \tag{4}$$

$$\frac{\mathrm{D}r}{\mathrm{D}t} = -\frac{S}{L}C_p \tag{5}$$

其中, $\frac{D}{D_t} = \frac{\partial}{\partial t} - \alpha x \frac{\partial}{\partial x} + \omega \frac{\partial}{\partial z}$, r 为比湿, S 为凝结 加热, 从而得到新的物理量场分布。

3 模式的改进和试验设计

本文采用的是显式湿模式,即认为凝结潜热的 加热只可能发生在部分上升运动区,在该区实际比 湿超过饱和比湿,并且假定凝结出来的水汽都以降 水的形式降落到地面。为了较好地处理这个问题, 我们参考了文献[5]中的处理方法。

这种显式模式要求给定位温和相对湿度的初始 分布,再计算出其他物理量的分布,然后再用该模式 进行数值积分。

初始位温场的分布由表示环境平均位温的 $\overline{\theta}$ 、 大尺度位温分布 θ_s 和中尺度的位温扰动 θ_m 所决定,即:

 $\theta = \bar{\theta} + A\theta_{\rm s} + \theta_{\rm m}$

$$\bar{\theta} = \frac{\partial \theta}{\partial z} = \theta_z \cdot z \tag{7}$$

(6)

式中 $\theta_z = 3.274$

$$\theta_s = \frac{2 \Delta \theta_s}{\pi} \operatorname{arctg}(\frac{x}{L}) \tag{8}$$

式中 $\triangle \theta_s = 12 \text{ K}$ $L = 3.5 \times 10^5 \text{ m}$ A 为 θ_s 的系数,它随高度而变化,它的取值如下:

$$A = \begin{cases} 0 & 0 \text{ m} \leq z < 1 \times 10^{3} \text{ m} \\ \frac{z - 1 \times 10^{3}}{4 \times 10^{3}} & 1 \times 10^{3} \text{ m} \leq z < 5 \times 10^{3} \text{ m} \\ 1 & 5 \times 10^{3} \text{ m} \leq z \leq 1 \times 10^{4} \text{ m} \end{cases}$$
(9)

这样取值的目的,是为了改变原来把整个对流 层都当作斜压层的做法,而把垂直高度1 km 以下 的对流层当作正压层,1~10 km 当作斜压层。 $\theta_{\rm m}$ 是为了模拟梅雨锋区南侧的暖区,在位温场 上迭加的一个中尺度位温扰动,其形状见图 1,文献 [1]中的位温扰动公式为: $\theta_{\rm m} = \Delta \theta_{\rm m} \cdot \exp[-(x - x_0)^2/L_{\rm m}^2]$,其中 $\Delta \theta_{\rm m} = -1 \ C$, $x_0 = 700 \ {\rm km}$, $L_{\rm m} = 100 \ {\rm km}$,由于梅雨锋南侧的位温扰动是中 α 尺度, 所以我们在试验中取 $L_{\rm m} = 400 \ {\rm km}$,并且在原公式 的基础上增加了一个高度函数 H(z),即

图 1 初始位温 θ_m 扰动的形状

$$\theta_{\rm m} = \Delta \theta_{\rm m} \cdot \exp[-(x - x_0)^2 / L_{\rm m}^2] \cdot H(z) \qquad (10)$$

H(z)的取值如下:

$$H(z) = \begin{cases} 1.0 & 0 \text{ m} \leq z < 2.5 \times 10^{3} \text{ m} \\ 2.0 - z \times 0.4 \times 10^{-3} \\ 2.5 \times 10^{3} \text{ m} \leq z < 5 \times 10^{3} \text{ m} \\ 0.0 & 5 \times 10^{3} \text{ m} \leq z \leq 1 \times 10^{4} \text{ m} \end{cases}$$
(11)

其形状见图 2 中曲线 1 (实线)。我们取 $\Delta \theta_{\rm m} =$ 1 \mathbb{C} , $x_0 = 700 \text{ km}$, $L_{\rm m} = 400 \text{ km}$ 。

本文的试验是改变相对湿度的分布,取了可供 比较的两个试验,相对湿度的分布取

$$R = C \times B(z) \tag{12}$$

其中 $C = 0.6 + 0.3 \operatorname{tg}(\frac{x - L}{L}) + 0.35 \exp[-\frac{(x - x_0)^2}{(0.4 \times 10^5)^2}]$ (13)

 $L = 3.5 \times 10^5 \text{ m}, B(z)$ 是相对湿度的系数。

试验 1 中取 B(z) = 85%,即认为整层大气水 汽分布是均匀的;

试验 2 中 B(z)随高度变化,它的取值如下:

$$B(z) = \begin{cases} 0.85 + \frac{3}{50}z \\ 0 \le z < 2.5 \times 10^{3} \text{ m} \\ 0.85 - \frac{7}{150}(z - 2.5) \\ 2.5 \times 10^{3} \text{ m} \le z \le 1 \times 10^{4} \text{ m} \end{cases}$$
(14)

其形状见图 2 中曲线 2(虚线)。

因此,水汽分布在垂直高度 2.5 km 上达到最 大,这主要是考虑到梅雨锋降水的水汽是由低空急 流(高度约 2~3 km) 输送的。这样,在 2.5 km 高 度上,相对湿度可达 98%,这更接近实际情况。

各物理量的初始场给定后,代人 σ 方程和 ψ 方程,迭代若干步,求解上述两个方程,迭代次数由所需的迭代精度而定,然后由控制方程积分,每步积分的结果再代人 σ 方程和 ψ 方程求解,然后再由控制方程作下一步积分,如此周而复始,直至停止。

积分到一段时间后,我们绘出有关的物理量的等 值线图,图形绘制设置在实际空间中而不是半地转空 间,水平方向取 3000 km,垂直方向取为 10 km。

本文所研究的区域为(5000×10) km²,水平格点

数为 129 个,水平格距为 39062.5 m,垂直格点数为 41 个,垂直格距为 250 m,时间积分步长取为 900 s。

4 试验结果分析

在研究梅雨锋的结构时,把从地面到对流层顶 的这一部分当作斜压层,并且认为由上升运动引起 的水汽饱和,凝结以及非绝热加热均发生在整个对 流层里。这样做的结果,由于水汽凝结潜热的释 放,上升运动加强,而上升运动的加强又使水汽凝结 加剧,上升运动和凝结潜热(非绝热加热)形成一个 正反馈过程。因此,一旦条件具备,在很短的时间内 (例如 24 h)就可以形成锋面,这比于模式更接近实 际情况。

下面我们对二个试验从位涡场、经对涡度场、垂 直速度场及加热场进行分析对比。首先看一下初始 场各物理量的等值线图。从位涡场(图 3a)可以看 到,在水平方向 700 km、垂直高度 1.6 km 处有一位 涡大值中心,中心强度达 0.51×10^{-6} 位涡单位(1 位 涡单位 = 10^{-6} km⁻²·kg⁻¹·s⁻¹);绝对涡度场(图 4a) 上,地面水平方向 700 km 处有一大值区,中心强度 达 1.4×10^{-7} s⁻¹,垂直速度场(图 5a)上,上升运动 中心强度为 1.01×10^{-2} m/s,下沉运动中心在水平 方向 - 500 km、垂直高度 6 km 处,中心强度为 -1.13×10^{-2} m/s,W₊/W-仅为 0.90,垂直速度场

(a.初始,b.试验1,c.试验2,单位:10⁻⁸位涡单位,1位涡单位:10⁻⁶km⁻²/kg·s)

并没有出现我们预想的双重锋区,一种可能的解释 是:由于温度扰动的位置位于锋区附近,温度扰动对 垂直速度场的影响被斜压区所对应的冷区下沉、暖 区上升的垂直环流所掩盖。

试验1,即认为整个对流层的湿度系数为85%, 积分 9.2 h 后, 位涡场(图 3b) 与初始位涡场(图 3a) 相比,在水平方向 500 km、垂直高度 4 km 处出现一 位涡增大中心,在水平方向 250 km、垂直高度 7 km 处,位涡减小;从加热场(图 6a)可见,加热中心在水 平方向 500 km、垂直高度 5 km 处,加热区范围大, 上下延伸相当;对比加热场(图 6a)与位涡场(图 3b),可见,位涡增大区正好位于最大加热层的下方, 位涡减少区位于最大加热层的上方。这可以从式 (4)得到解释,即在最大加热层的下方,故位涡增大; 在最大加热层的上方,故位涡减小。同时,在有凝结 潜热释放的地方,等值线变得不光滑,这说明非绝热 加热能够引起位涡扰动,非绝热加热的作用比初始 位温扰动的作用要明显些。另外,在垂直速度场(图 5b)上,出现了一条宽 400 km 的强上升运动带,对 应的雨量强而集中,W₊/W-高达3.6,对比垂直场 (图 5b)和加热场(图 6a),可以看到强上升中心正 好对应着加热中心,说明非绝热加热能够增强上升 运动;反过来,上升运动又可以得到更多的凝结潜 热,这是一个正反馈过程。加热场(SDOT)最大值

的强度和位置的变化及最大值的强度和位置的变化 图略。绝对涡度场(图 4b)与初始场(图 4a)相比较, 绝对涡度在水平方向 500 km 处增大,但最大涡度 中心仍在地面,绝对涡度轴线倾斜度减小。由上述 可得,非绝热加热对位涡场、垂直速度场以及绝对涡 度场的影响比初始温度扰动更加明显。

试验2考虑了湿度系数随高度的变化,积分 5.2 h后,位涡场(图 3c)与初始位涡场(图 3a)相比, 在水平方向 700 km、垂直高度 2.5 km 下方出现一 位涡增大中心,上方有位涡减小;从加热场(图 6b) 来看,加热中心在水平方向 600 km、垂直高度 2.5 km处,整个加热区限制在 2.7 km 以下。加热 场(图 6b)与位涡场(图 3c)对比,可以看到,在最大 加热层上方有位涡减小,下方有位涡增大,这同样可 由式(4)得到解释。位涡场上也可以看到位涡扰动, 这说明非绝热加热能够引起位涡扰动,其作用要 比初始温度扰动的作用更明显。从垂直速度场(图 5c)上,我们可以看到,潜热释放主要集中在对流层 低层,雨区水平范围也比较窄,W₊/W-为2,这与梅 雨锋降雨的实况不相符合。对比加热场(图 6b)和 垂直速度场(图 5c),可以看到,强上升中心对应着 加热中心,再一次说明了它们之间正反馈的关系。 绝对涡度场(图 4c)与初始场(图 4a)相比较,可以看 到,水平方向 600 km、垂直方向 5 km 以下绝对涡度 值增大,2 km 高度上虽然出现一大值中心,但最大

图 4 绝对涡度场 (a.初始,b.试验 1,c.试验 2,单位:10⁻⁵s⁻¹)

图 6 加热场 (a.试验 1,b.试验 2,单位:10⁻⁵ K/s)

涡度中心仍在地面,绝对涡度轴线变得垂直。由上述可见,非绝热加热对各物理量的影响要比初始温度的影响要明显。

比较一下试验1和试验2的结果,从加热场的 对比(图 6a 和图 6b),试验1的加热中心在对流层 中部,向上、向下伸展广,试验2的加热中心在对流 层低层,这是因为在试验1中,垂直高度上水汽分布 均匀,水汽凝结区则相对均匀,因此非绝热加热也相 对均匀;而试验2中,垂直高度上水汽分布并不均 匀,2.5km高度上湿度最大,凝结潜热在此高度上 释放得最多,因此,加热中心在此高度上,整个加热 区限制在对流层低层。比较一下两次试验中的 W₊/W₋, ζ 轴线倾斜程度以及雨带的分布, 我们可 以看出, 试验1的结果比试验2的结果更符合实际 一些。

5 结论与讨论

(1)非绝热加热能够使雨带变窄,绝对涡度轴 线倾斜度减小,W₊W/-增大,非绝热加热的影响 比初始温度扰动的影响明显;

(2)有温度扰动的初始场与无扰动的初始场相 比,有温度扰动的位涡初始场能够使扰动地区低层 位涡增大,高层位涡减小;有温度扰动的垂直速度场 上可以出现双重锋区,从而影响降水,所以初始温度 扰动对某些物理量场的影响有着不容忽视的作用;

(3)比较试验1和试验2的结果,我们认为整 层相对湿度乘以系数85%的试验1比湿度随高度 变化的试验2的结果更接近实际情况。

由于模式还处于试验阶段,与实际情况有一定 的差距,在以后的试验工作中以下几点需要改进

(1) 是初始扰动的位置,即扰动的位置不是在

水平方向 700 km 处, 而是在上游更远一些的地方, 那样, 在垂直速度场上的锋区就会更明显些;

(2)改变湿度的垂直分布。在试验 2 中,0.0~
2.5 km的湿度系数由 85%线性递增到 100%,2.5~10.0 km 的湿度系数由 100%线性递减到 50%,湿度最大值在 2.5 km 上,如果我们把湿度最大值的位置考虑得高一些,湿度系数按更合理的关系递减到 50%,结果可能更接近于实际情况;

(3)用试验1及试验2求解后的垂直速度场 (图5)中,上升中心的数值都明显增大,而下沉中心 值变化很小,这不太符合锋区附近垂直环流(上升运 动和下沉运动)同时增强的天气实践;同样,加热场 (图6)中没有"冷却中心",不符合在500 km 范围内 必有狭窄的锋生地带温度梯度增强的实践。

(4) 对 A 的设定也有一定的缺陷。 $1 \times 10^3 \text{ m} \le z \le 5 \times 10^3 \text{ m}$ 时,0 < A < 1,反不如对流层上层(500 hPa 以上)的斜压性强,这不太符合天气学中锋区附近斜压性强,而且在对流层的中下部(850 ~ 500 hPa)最强,等温线密集的实际情况。

参考文献

- 1 Donglas S. Chan T, HanRu Cho. Meso-β-scale potential vorticity anomalies and rainbards. Part I : Adiabatic dynamics of potential vorticity anomalies. J Atmos Sci, 1989, 46:1713 ~ 1723.
- 2 Han-Ru Cho, Donglas Chan. Meso-β-scale potential vorticity anomalies and rainbands. Part []: Moist model simulations. J Atmos Sci., 1991, 48:331 ~341.
- 3 Thorpe A J, Emanual K A. Frontogenesis in the presence of small stability to slaluise convection. J Atmos Sci, 1985, 42:1809~1824.
- 4 寿绍文. 中尺度天气动力学. 北京: 气象出版社, 1993, 252 pp

5 Corbg G A, Gilchrist A, Rowntree P R. 英国气象局大气环流五层模式,大气环流模式.北京:气象出版社,1987,287pp

LATENT HEAT AND EFFECTS OF INITIAL POTENTIAL TEMPERATURE DISTURBANCE RELEASE ON FRONTOGENESIS

Wang Yiping

Hou dingchen

(Yancheng Meteorology Bureau, Jiangsu Province 224001) (Nanjing Institute of Meteorology, Nanjing 210044)

Abstract

Based on the work of Chan and Cho, a meso- β scale potential disturbance was replaced by a meso- α scale potential disturbance, and add an elevation function-H(z), as:

 $\theta_{\rm m} = \Delta \theta_{\rm m} \cdot \exp[-(x - x_0)^2 / L_{\rm m}^2] \cdot H(z)$

The distributions of relative humidity were changed two experiments which could be compared each other, and run the NSI semi-geostrophic humid atmosphere frontogenesis model produce. After run a period, some contour charts of some physical variables were drew, the effects of diabatic heating and initial potential temperature disturbance on were analyzed and compared physical variables.

Key words: Frontogenesis, Diabatic heating, Initial potential temperature disturbance, Physical variable fields.