一个新的干沉积速度型及其在高分辨区域 酸沉积模式中的应用*

雷孝恩

(中国科学院大气物理研究所,北京,100029)

亜

为研究区域尺度干沉积过程,发展了一新的干沉积速度型(NDDVP)。NDDVP与1022 次干沉积速度(V₄)实积密料之间平均比值为1.06±0.82, 表明 NDDVP 与实测资料有好的 一致性。用分别具有 NDDVP 和原V。型的高分辩区域酸沉积模式(EM3)作实例预测,发现仅 由 V。 规的不同所引起的 SOT 中心浓度之间最大比值可达 2.4,用 NDDVP 预测的物质浓度 和干沉积量比用原 V。 现有明显的改善。

关键词: NDDVP,EM3,CL,下垫面型。

1 前 言

区域尺度大气环境质量研究表明,由土壤、森林、植物、城市和水体等不同下垫面介面 吸收引起的干沉积过程,使对流层中很多痕量气体(含细的气溶胶粒子)明显减少,干沉积 引起的向地面迁移的痕量气体在50%以上,比湿沉积过程更重要。干沉积过程正确的参 数化对痕量气体在区域尺度范围的演变规律认识十分重要,已引起了科学界的广泛注 意^[1]。导出痕量气体在不同下垫面的 V。, 使之能用到大尺度数值模式和解释大气化学及 生态环境方面特别关心的观测事实,是本研究的出发点。

NDDVP 的导出 2

2. 1 植物冠层内的干沉积速度

平稳和水平均匀情况下,控制植物冠层(CL)内和以上痕量气体浓度 C 的方程可写成

$$\frac{d}{dx}K_{*}\frac{d}{dx}C = \lambda C \tag{1}$$

$$\lambda(z) = V_{\mathbf{g}}(z)A(z) = A(z)/R_{\mathbf{g}}(z) \tag{2}$$

式中 K_{\star} 是垂直涡旋扩散系数, λ 是 CL 内的迁移率, $V_{g}(z)$ 和 $R_{g}(z)$ 是局地沉积速度和阻 力,它们是高度的函数并依赖 CL 内或界面上的生物特性及痕量气体的化学性质,A(z)是植物叶面密度, $A(z)/R_s(z)$ 或 $V_s(z)A(z)$ 反映了 CL 吸收特性的垂直结构。

如果λ=0,则吸收作用只出现在地表面上。从 z_d 到 z_r 积分方程(1),经整理后得到没 有 CL 或不考虑 CL 吸收作用的沉积速度为

^{* 1993} 年 2 月 4 日收到原稿,1993 年 5 月 28 日收到修改稿。系国家自然科学基金 LASG 和 LAPC 资助项目。

$$V_{d} = \left[1 - C(z_{d})/C(z_{r})\right] / \left[\int_{z_{0}}^{z_{r}} \frac{dz}{K_{z}} + \int_{z_{d}}^{z_{0}} \frac{dz}{K_{z}}\right]$$

$$= \left[1 - C(z_{d})/C(z_{r})\right] / (R_{a} + R_{b})$$
(3)

式中 20 和 2d 分别是动量和质量汇高度,2, 为某个参考高度。

$$R_b = \int_{z_L}^{z_0} \frac{\mathrm{d}z}{K_z} = \ln(z_0/z_d)/(0.36U_*) \tag{4}$$

$$R_a = \int_{z_0}^{z_r} \frac{\mathrm{d}z}{K_z} \tag{5}$$

式中U,是摩擦速度。如果z。到z,之间采用物质通量为常数的假设,即

$$C(z_r)V_d = C(z_d)V_g(z_d)$$
(6)

并采用关系

$$V_{\sigma}(z_d) = 1/R_c \tag{7}$$

则式(3)变成。

$$V_{d3} = 100/(R_a + R_b + R_c) (\text{cm s}^{-1})$$
 (8)

式中 R_c 为CL内或地表面的总阻力。 V_{d3} 是目前区域尺度模式中广泛使用的阻力相似关系。

如果 λ 不为零 $_{1}$ CL的作用相当在动量和物质守恒方程中增加源和汇项 $_{1}$ 于是常通量层的关系在 $_{1}$ CL内不满足 $_{1}$ CL,和物质通量 $_{2}$ F分别为

$$V_{g}(z) = F/C \tag{9}$$

$$F = K_z \frac{\mathrm{d}C}{\mathrm{d}z} \tag{10}$$

联立关系式(1),(9)和(10)可得到

$$\frac{\mathrm{d}}{\mathrm{d}z}(CV_g) = \lambda C \tag{11}$$

由式(9)和(10)可导出另一守恒关系

$$\frac{\mathrm{d}}{\mathrm{d}z}C = CV_{\mathrm{g}}/K_{\mathrm{z}} \tag{12}$$

对式(11)和(12)从 za 到 zr 积分,经过运算整理得出如下关系

$$V_{d} = \left[\int_{z_{d}}^{z_{r}} \lambda \, \mathrm{d}z/(R_{a} + R_{b})\right]^{0.5}$$

$$= \left[\int_{z_{d}}^{z_{r}} V_{g}(z) A(z) \mathrm{d}z/(R_{a} + R_{b})\right]^{0.5}$$

$$= \left[V_{a} \cdot V_{t}\right]^{0.5}$$
(13)

式中 $V_t=1/(R_a+R_b)$ 是由行星边界层(PBL)和CL中湍流引起的物质传送速度, $V_a=\int_{z_d}^{z_r}\lambda dz=\int_{z_d}^{z_r}V_s(z)A(z)dz$ 是在界面(陆-气、水-气和植-气)上吸收作用引起的物质传送速

度,它依赖 CL 垂直结构、生态特性及痕量气体的化学性质。 V_a 是 V_a 和 V_i 的几何平均值。 2.2 区域尺度模式实用的 V_a

在区域尺度模式中,即使入已知,用式(13)作详细的数值积分可导出 V_a ,但如此细的垂直网格,在实际应用中是不可能的。因 V_a 通常是以下边界条件引入模式的,模式最低网格层比CL高度要高得多。虽然式(8)比(13)容易直接引入模式,但式(13)比(8)更准确,且具有更多的优点。问题的关键是要将式(13)中 V_a 参数化,使之既要保持其优点,又要象 V_{a3} 那样能方便地引入模式,这实际上就是要将代表吸收特性的微观结构,用宏观的总体参数来描述。根据相似性原理,入可用 z_{11},z_{22} 和R的组合表示,将式(13)变成

$$V_d = \left[(z_r - z_d) F(R_c) / (R_a + R_b) \right]^{0.5}$$
 (14)

其中 $F(R_c)$ 是一具有时间量纲倒数的待定函数。

$$R_{c} = 1/[1/R_{n} + 1/R_{t} + 1/R_{d}] \tag{15}$$

这里 R_{\bullet} 、 R_{\bullet} 、 R_{\bullet} 分别是 CL、CL 上层、CL 下层和地表面的总体阻力^[3], R_{\bullet} 包括了 CL 垂直结构的影响,对不同痕量气体、下垫面型、季节和气象条件下的 R_{\bullet} 、 R_{\bullet} 和 R_{\bullet} 已由文献 [4]系统地给出。关于 z_{\bullet} 参数化,文献[2]已导出了以下合适的关系

$$\ln(z_0/z_d) = 2.0 \tag{16}$$

待定函数 $F(R_a)$ 的确定有两种方法:一是使用大量野外实测的 V_a 和 R_a 资料;另一种是采用数值试验方法,由以下关系求出 V_a

$$V_d = \int_{z_d}^{z_r} A(z)C(z)/R_g(z)dz/C(z_r)$$
 (17)

本文采用第二种方法。我们设计了一个CL和PBL之间物质和动量守恒耦合模式^[2],模式由5部分组成:包含吸收因子的二维物质守恒方程;详细CL垂直结构的物质吸收过程;CL内具有附加较大尺度扩散项的一阶闭合动量交换过程;新的PBL湍流统计量参数组作为PBL的耦合参数^[5];地表面的吸收、溶解和反射特性。模式最低网格为4.05cm,CL内一般有10个以上的网格层。

使用耦合模式对有无 CL 和大气稳定度及不同类型 CL 的 8 类例子^[2]作数值研究,得出 CL 内详细的浓度垂直分布,并由式(17)求出 V_a 。已知 V_a 和对应的 R_c 、 z_r 和 z_a 后,由式(14)便可导出离散的 $F(R_c)$ 值。首先,对没有 CL 和稳定度影响的各种例子进行综合的相关分析后, $F(R_c)$ 最合适的关系为

$$F(R_c) = A_0 R_c^{-B_0} (18)$$

式中 $A_0 = 0.632$, $B_0 = 1.46$, A_0 是一有量纲的系数,相关系数为-0.97。将式(18)代入(14),则

$$V_{d5} = 79.5[(z_r - z_d)R_c^{-B_0}/(R_a + R_b)]^{0.5} (\text{cms}^{-1})$$
 (19)

其次,对不同CL(如森林及农作物)和稳定度影响的式(19)和(8)为

$$V_{di} = F_0 + G_0 V_{di} \qquad i = 3.5 \tag{20}$$

 F_0 和 G_0 是大气稳定度和 CL 垂直结构的函数(表 1)。式(20)完善地描述了有无 CL 和稳定度影响的 V_a ,它虽是式(13)的数值经验形式,但它既保留了式(13)的所有优点又可方便地引入区域尺度模式中。

稳定度		稳定		中性		不稳定		总体	
i		3	5	3	5	3	5	3	5
	\boldsymbol{F}_0	0.14	0.04	0.48	0.01	0.01	0. 26	0.01	0.01
森林	G_{0}	1.88	1. 21	2.04	1.13	3.46	1.02	2. 27	0.99
	\boldsymbol{F}_0	0.17	0.01	0.17	0.01	0.01	0.24	0.17	0.01
农作物	G_{0}	0.63	1.05	0.91	1.42	1.78	1.40	0.97	1.35

表1 表达式(20)的参数

2.3 表达式(20)的检验

为了检验式(20)的合理性,收集了过去 10 年 20 处的 1022 次实测 V_a 和相应的 R_c 资料(表 2)。计算与实测的比值给在表 3 中。

表 2	干沉积速度实验资料的来源

化学物质	下垫面状况	作者及参考文献				
SO ₂	草地、土地	Fowler. Atmospheric Environment(AE). 1978, 369 – 373.				
SO_2	麦、大豆和草地、森林	Gorland. AE. 1978, 349 – 362.				
SO_2 , SO_4	自然地面	Husar. Sulfur in the Atmosphere(SA). 1978,549-568.				
SO_2 , SO_4	自然地面	Omstedt SA. 1978,503-529.				
SO_2	森林、草地、水泥地	Sehmel. AE. 1982,815-820.				
O_3	森林	Wesely. AE. 1980, 983 – 1011.				
SO_2 , NO_X , O_3	自然地面	Calvert. Aoid Deposition—Atmospheric Processes in Eastern North America. 1983,213—273.				
SO ₂	草地	Davies. Precipitation Scavenging, Dry Deposition and Resuspension (PSDYR). 1983,795-805.				
NO_X,O_3	草地	Delany. AE. 1983,1391-1394.				
GPS	草地	Dolske. Meteorology of Acid Deposition (MAD). 1983,189-201.				
SO_2	自然地面	Dumont. Air pollution Modelling and its Application, III. 1983, 453-469.				
SO_2	森林	Fowler. PSDYR. 1983,763-773.				
HNO_3	森林	Huebert. PSDYR. 1983,785-794.				
SO_2	草原	Hicks. PSDYR. 1983, 933 – 942.				
NO_X	森林	Hicks. MAD. 1983,189-201.				
PS	草原、森林	Wesely. PSDYR. 1983,189-201.				
NO_{X} , O_{3}	自然地面	McRae. Deposition both West and Dry. 1984,153-195.				
PS	自然地面	Camara. Master Paper, SUNYA. 1986, 1-60.				
SO_2	森林	McMillen. NOAA Technical Memorandum, ERL, ARL-152. 1987, 1-66.				
PS	牧场、草原、裸地	Nicholson. AE. 1987,1561-1671.				

(PS=Particulate Sulfur(微粒状硫), GPS=Gaseous and Particulate Sulfur(气态和微粒状硫))

从表 3 看出:虽然标准差有些偏大,但它们均小于平均比值;计算与实测的平均差均在 20%以内,表明 V_{d3} 、 V_{d3} 、 V_{d5} 和 V_{d5} 、与实测值均有好的一致性,但 V_{d5} 大于 V_{d3} ;最好的

公式是 V_{ds} , 它最接近实测资料; V_{ds} , 和 V_{ds} , 分别比 V_{ds} 和 V_{ds} 接近实际, 表明考虑 CL 垂直 结构和大气稳定度影响后效果变好, 使 V_{ds} 增加。

事 3	计算与实测了	7. 之间は	/ 信 体 计 仕 里
ऋद ७	川井可火便り	ᇪᅩᄜᄺ	加り切り気米

V_{d3}/V_{d}	V_{d3s}/V_{d}	V_{d5}/V_{d}	V_{d5s}/V_d	$(V_{d5s}-V_{d5})/V_d$	$(V_{d3s}-V_{d3})/V_d$
0.81± 0.611	1.11± 0.833	0.92± 0.708	1.06± 0.816	14. 11%	29.67%

2. 4 NDDVP

所谓 NDDVP 是相对现在广泛使用的 V_{d3} 及其相应的有关参量而言的,如 RADM^[1]中使用的 V_{d3} 型就可代表现行的 V_{d} 型,为比较方便,将主要参量归纳如下:采用文献[6]给的 K_{z} 公式; $z_{r} \approx 72$ m,是 RADM 最低网格高度; $V_{d} = V_{d3}$;采用文献[4]给出的不同痕量气体 CL 吸收特性资料,其中包括下垫面型、季节和地面湿度的影响; z_{d} 由 $\ln (z_{0}/z_{d}) = 2.83$ 导出; PBL 厚度为 1.5km,它不随大气稳定度变化。

NDDVP 与 V_{ds} 型之间主要差别是:由文献[5]中的 K_z 代替文献[6]中的公式,包含了 PBL 内湍流统计特征量; $z_r = 3.5m$,是 EM3^[7]的最低网格高度;如果 $z_0 \ge 0.5m$ 并具有 CL,使用森林 CL 的 V_{ds} ,如果 $0.1m \le z_0 < 0.5m$,且具有 CL,农作物的 V_{ds} ,被采用,如果 $z_0 < 0.1m$ 或没有 CL,则使用 V_{ds} 计算; z_d 由式(16)计算; PBL 厚度随大气稳定度变化,对不稳定,中性和稳定大气分别为 1500,700 及 400m。

3 NDDVP 在 EM3 中的实际应用

3.1 EM3

EM3^[7]是一欧拉输送/转化模式,它将对流层分成 19 层,具有 80km 分辨率的 30×30个水平网格,使用气象模式(MM4)产生每 1h 三维风、温和水汽混合比及二维地面温度、气压和降水率。

用 EM3 来模拟 1981 年 4 月 22-24 日计 72h 的酸沉降过程(OSCAR4 例子) $^{[8]}$ 。研究的问题是:在其它条件完全一样的情况下,讨论 NDDVP 和 V_{d3} 型两者的 $SO_2 \ SO_4$ 浓度及干沉积量分布之间差别并作影响干沉积过程的因子实例分析。

3.2 不同控制因子对干沉积过程的影响

使用 OSCAR4 的实例资料,讨论不同控制因子对 NDDVP 和 V_{d3} 型的影响。 SO_2 的 V_{d3} 、 V_{d3} 、 V_{d5} 和 V_{d5} 之间比较及随时间变化给在图 1 和表 4 中。

从图 1 和表 4 看出: V_{d5} 明显大于 V_{d3} ,用 V_{d3} 作干沉积估算,将会低估沉积量;大气稳定度和 CL 垂直结构总的使 V_{d} 增加, V_{d5} , V_{d3} ,分别大于 V_{d5} 和 V_{d3} , V_{d5} 比 V_{d5} 可大 91%;图 1 给出了 V_{d} 的日变化,它们的变化趋势一致,表明大气稳定度的重要性, V_{d5} > V_{d5

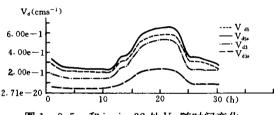


图 1 3.5m 和 i=j=22 处 Va 随时间变化

3 节中得到的一致。大气稳定度及 CL 垂直结构是 V_a 的重要控制因子。

 V_a 依赖于痕量气体的化学特性。 SO_{\bullet}^{T} 、 O_{\circ} 和 HNO $_{\circ}$ 的 V_a 随时间变化规律给在图 2 中。图 2 表明,不同化学物质 3.5m 和 72m 高度之间的 V_a 有明显差别。72h 内 3.5m 处 HNO $_{\circ}$ 的 V_a 总是大于 72m 处的值,在 3 种物质中它的 V_a 最大。除了第 25 到 38h 及 50 到 60h 时段外,3.5 和 72m 处 O_{\circ} 的 V_a 基本相同。而 SO_{\bullet}^{T} 的 V_a 分布明显不同于 O_{\circ} 和 HNO $_{\circ}$ 。HNO $_{\circ}$ 在 CL 中或在地面上吸收能力非常强,由湍流传输来的物质基本上被吸收了。也就是说阻力很小, V_a 几乎只由 R_a 决定,造成 HNO $_{\circ}$ 的 V_a 远远大于 O_{\circ} 、 SO_{\bullet}^{T} 和其它物质。

比值	Max.	Mean.	Min.	
V_{d3}/V_{d5}	1. 09	0. 78	0. 41	
V_{d3s}/V_{d3}	1. 37	1. 19	1.00	
V_{d5s}/V_{d5}	1. 91	1.31	1.05	

表 4 3.5m 和 i = j = 22 处不同 V_a 之间比值统计

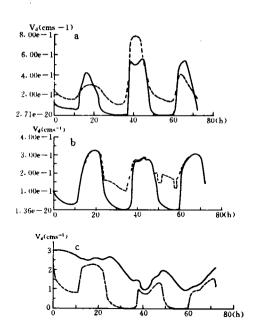


图 2 3.5m,72m 和 i=j=22 处 SO₄(a), O₃(b),HNO₃(c)的 V_d 随时间变化 (图中 3.5m 高度以实践表示,72m 以虚线表示)

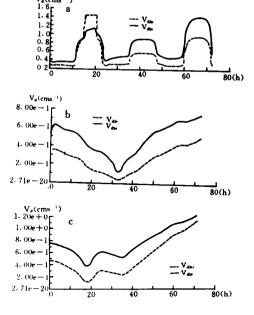


图 3 3.5m 高度处 V_d 随时间变化 (a. j=8,i=14 b. j=2,i=17 c. j=7,i=26)

为分析水平非均匀性对 V_a 影响,对不同下垫面型(i=26,j=7,i=17,j=2,i=14,j=8及 i=j=22,10分别表示海、海岸、森林及森林和农业混合区)的 SO₂ 的 V_a 作了比较分析 (见图 3 和表 5)。

从图 3 和表 5 可看出:不同下垫面 V_a 随时间变化存在明显差别,如岸区 72h 内只有 1

个低中心(图 3b),海区有 2 个低中心(图 3c),而森林区存在有 3 个峰值和低值中心;海和海岸区 V_{ds} , 总是大于 V_{ds} , ,而森林区 V_{ds} , 可以大于 V_{ds} ; ,最小比值可小于 0. 18,最大比值总是大于 3,说明在 V_{d} 估算中,非均匀性的考虑是非常重要的,对同一地形, V_{ds} 比 V_{ds} 离散度要小。

比值	$V_{d5s}(1010)$	V _{d3s} (1010)	$V_{dSs}(1702)$	V _{d3s} (1702)	V _{d5s} (2607)	V _{d3s} (2607)	$V_{d5s}(1408)$	$V_{d3r}(1408)$
Max	3. 60	5. 31	4. 49	3. 17	5. 37	4. 06	3. 98	3.55
Mean	1.43	1.61	1.65	0.89	2.48	1.57	2. 14	1.50
Min	o. 50	0. 61	0.60	0.18	0.60	0. 20	0.95	0.58

表 5 不同下垫而与 i=i=22 外 V。 之比统计结果

3.3 瘪量气体浓度和干沉积量的预测

 SO_2 、 SO_4 浓度及其干沉积量已用只有 V_{ds} 和 V_{ds} 不同的 EM3 分别作了预测。图 4 表示 18h 的 SO_4 地面浓度,图 4a 与 4b 分布形状相似,如美国相应的最大浓度值出现在圣路易斯、匹兹堡、费城和纽约城区一带,但它们的中心值差别较大,这是由不同的 V_d 型引起的。图 4a 中的 10 个最大中心在图 4b 中有对应,它们间浓度平均比值为 1. 2±0. 616,最大为 2. 4,最小为 0,47,对一些小中心,其位置和分布形状均存在着大的差别。结果表明,

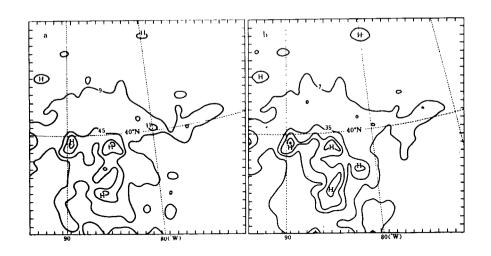


图 4 具有 $V_{ds}(a)$ 和 $V_{ds}(b)$ 的 EM3 预测的 SO_{\bullet}^{\pm} 浓度(ppm/0.10e+0.6)分布

由 V_{as} ,和 V_{as} 引起的迁移过程有明显的不同,沉积过程的影响具有显著的非均匀性。

两者的 SO_2 干沉积量水平分布也非常相似,对应的中心值差别也很大,11 个大中心间沉积量的平均比值为 1.55 ± 0.722 ,最大为 3.0,最小为 0.64。由 SO_2 浓度和沉积量分布比较发现,沉积中心位置几乎与浓度中心一致,但由干沉积速度引起的沉积量越大,污染浓度降低得越低。

由 V_{d5} 和 V_{d3} 之不同造成大的实际浓度和沉积量的差别,但那一个更符合实际并没

有回答。为此,我们将只就 V_a 型之不同的 EM3 所作的实际 SO₂ 浓度预测与 16 次测量资料(包括 6 个不同监测站)作了比较(表 6)。从表 6 看出,实测与 EM3 V_{a5} ,预测浓度之间的比值都不大于 2,只有两次小于 0.5,而 EM3 V_{a5} 的结果,比值大于 2 的有 4 次,小于 0.5 的有 6 次,可见 EM3 V_{a5} 与实测比值的离散度远远大于 EM3 V_{a5} , V_{a5} , 比 V_{a5} 更符合实际。结果表明,本文提出的 NDDVP 对区域尺度浓度的预测有明显的改进。

表 6 实测和计算的浓度比

比值 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 实测/EM3 V_{d5} 1.53 1.67 1.53 0.25 1.67 0.77 1.60 0.21 0.97 0.55 1.45 0.97 1.18 0.50 0.60 0.52 实测/EM3 V_{d3} 2.43 2.73 2.43 0.17 0.93 0.43 2.50 0.23 1.05 0.60 0.85 0.57 0.70 0.22 0.33 0.25

4 小结和结论

关系式(13)和(8)相比,前者的优点是:考虑了吸收(或阻力)因子和植物叶面密度两者的垂直结构对 V_a 的影响,没有常通量层的假设, V_a 可看成是 V_a 和 V_a 的几何平均值,其物理意义也比式(8)清楚。

一个描述有无 CL 及大气稳定度影响的 V_a 公式(20)已由理论和数值研究方法导出,并受到了实测资料的验证。

 V_a 对下垫面型是敏感的,在实际的模拟范围内, SO_2 的 V_a 从 0.085 变到 1.345cm/s, 下垫面型对沉积过程的影响是最重要的控制因子之一。

CL 垂直结构和大气稳定度两者对 V_a 的影响,不改变分布形状,只改变其值的大小。

不同的痕量气体及细的气溶胶粒子, V_{d5} ,均可使用,但包含在 V_{d5} ,中的吸收因子与物质的化学特性关系很大。

用具有 NDDVP 和 V_{d3} 型的 EM3 同时作的实例对比模拟,表明 NDDVP 代替 V_{d3} 型引起近地面浓度和干沉积量均有大的变化,NDDVP 更符合实际,预测的实际浓度和干沉积量的分布有明显改善。

参考文献

- [1] Chang J S et al. A three dimensional Eulerian acid deposition model: physical concepts and model formulation. Journal of Geophysical Research. 1987. 92: 14681—14700.
- [2] Lei Xiaoen and Chang J S. Numerical study on absorption characteristics of mass and momentum in canopy layer. Chinese Journal of Atmospheric Sciences. 1992. 16: 101—110.
- [3] Lei Xiaoen and Chang J S. Numerical study on dry deposition processes in canopy layer. Advances in Atmospheric Sciences. 1992. 9:491-500.
- [4] Wesely M L. Improved parameterizations for surface resistance to gaseous dry deposition in regional-scale numerical models. Center for Environmental Research Biological Environmental and Medical Research Division, Argonne National Laboratory, Argonne. IL. 1988, 1—60.
- [5] Lei Xiaoen. Parameterization of variation of turbulent statistics and wind speed with height in the PBL. Annual Report, IAP. Academia Sinica. 1988. 7: 248—253.
- [6] Louis J F. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Met. 1979. 17:182—202.
- [7] Lei Xiaoen. A high resolution model for chemical species exchange within the troposphere and simulation of regional acid deposition processes. The 4th Japan-China Symposium of JCSTEA Series. Tokyo, Japan. 1991, 51—56.

[8] Walcek C J et al. SO₂. Sulfate and HNO₃ deposition velocity computed using regional landuse and meteorological data. Atmospheric Environment. 1986, 20: 949—964.

A NEW DRY DEPOSITION VELOCITY PATTERN AND ITS PRACTICAL APPLICATION IN HIGH RESOLUTION REGIONAL ACID DEPOSITION MODEL

Lei Xiaoen

(Institute of Atmospheric Physics, Chinese Academy of Sciences, Bei jing, 100029)

Abstract

A new dry deposition velocity pattern (NDDVP) for the study of regional scale dry deposition processes is developed. The mean ratio between NDDVP and 1022 experimental data of dry deposition velocity V_d is 1.06±0.82. The result shows that NDDVP consist well with experimental data. Practical cases are forecasted by the high resolution regional acid deposition model (EM3) with both NDDVP and old V_d pattern. The maximum ratio between the central concentrations for SO₄ can reach 2.4 only due to different V_d pattern. 3-D distributions of species concentrations and dry deposition are forecasted by NDDVP better than by the old V_d pattern.

Kev words: NDDVP. EM3. CL. Landuse.