西双版纳地区冬季辐射雾的初步研究*

黄玉生 许文荣 李子华 樊 玲 黄文娟

(云南省气象局)

(南京气象学院)

西双版纳位于云南省南部,是我国有名的热带多雾地区。雾中能见度低,影响了交通运输,它具 有有害的一面,但它对生产高质量的茶叶十分有利,雾 和逆温所形成的山腰暖带,又能使橡胶树种植 范围向山地扩大,因而雾对西双版纳农林业生产又具有有益的一面。

1986 年 12 月 26 日至 1987 年 2 月 18 日期间,我们对西双版纳地区的景洪、勐养和勐海等地辐射 雾进行了 28 天的观测,用三用滴谱仪对雾滴谱取样,用 GZW-1 型低空探空仪进行边界层温度探测。为 了掌握山地不同高度雾的分布和温湿结构,还用汽车沿景洪至勐养的 36km 盘山公路作了 77 次来回流 动观测,每隔 1km 读取一个数据。

本文利用上述探测资料,分析了西双版纳地区辐射雾的时空分布,温度层结和微物理结构,给出 了辐射雾在发展过程中的一些特征。

1. 辐射雾的时空分布

西双版纳地处横断山系纵谷区的南段,东部为无量山的西部山地所控制,西部为怒山 余 脉 所 盘 踞,中部有澜沧江及其支流造成的宽谷盆地。无论盆地山区,辐射雾都频繁出现。

表1给出了西双版纳地区4个气象站多年记录的雾日数。由表可见,这个地区年平均雾日数都在 130 天以上,最多年份超过200 天,最少年份也在100 天左右。其中位于西双版纳最南边的勐腊,辐 射雾更多,平均雾日达152 天。西双版纳地区辐射雾冬季最多,如表2 所示,11-2 月4 个月间,雾 日占全年的67.7%,尤其是12 月和1 月,每6 天中就有5 天有雾。夏半年雾频率很低,6,7 两个 月,只有个别的日子有雾。

站 名	景洪	勐 腊	大勐龙	勐海	
	22°00′	21°29′	'21°35′	21°55′	
经度(E)	100°48′	101°34′	100°40′	100°25′	
海拔高度(m)	552.7	631.9	621.8	1176.3	
平均日数	132	152	135	138	
最多日数	184	208	168	167	
最少日数	87	94	103	110	
资料年代	1954-1980	1957—1980	1958-1980	1958	

表 1 西双版纳各地雾日数

山地辐射雾出现的时间和频率与盆地不尽相同。表 3 列出了 1986 年 12 月 26 日至 1987 年 1 月 15 日期间在完达山两侧不同高度上的观测结果。 景洪站位于山南盆地, 勐养站位于北坡脚下, 山北盆地 边缘, 比盆地高出 41m, 两站之间直线距离约 13km。由表 3 可见,山腰(900m 以下)与景洪盆地相比, 不仅雾日多, 而且起雾时间早, 消散晚, 持续时间长。就南北坡比较, 北坡起雾早, 消散晚, 持续时

* 本文于1989年7月12日收到初稿,1990年9月1日收到修改稿。

郹	₹ 5	2 -		雭	H.	旃	蛎≥	包子	≻布
v	- 4		エレン	75	ы	ну:	75 -	- /	/ 111

月	1	2	3	4	5	6	7	8	9	10	11	12	_
频 率 (%)	19.2	13.1	5.4	3.1	1.5	0.8	0.8	3.1	6.9	10.8	16.2	19.2	_

间平均比南坡长 3.5 小时。它们的共同规律是,起雾时间都由山下向山上推移, 高度愈高,起雾时间 愈晚。雾消时间一般先从盆地开始,而后山顶接之,因而山腰雾持续时间最长。

为了详细了解山地辐射雾的时空分布,我们将1987年1月6日0时15分至15时12分汽车在山 上来回流动观测的部分结果绘在图1上。勐养站是1时25分开始起雾的,由图1可以看到,2时35 分至44分汽车通过时,雾层厚度已过100m,而且继续向山上发展。大约5时15分,雾就盖满了整个 北坡,雾层浓度也随之加大,能见度小于100m的浓雾区厚度超过200m。这样的雾层一直持续到8时 50分,勐养站雾才开始消散,雾底有所抬升。10时04分雾顶下降,而山腰中雾层直至12时30分才 完全消散。"南坡雾发展过程与北坡类似,但起雾时间晚2个多小时。3时56分发现坡底起雾,以后很

 站 名	景 洪	ST ₁	ST ₂	ST ₃	ST₄	ST5	勐 养
位 置	山南盆地	南坡	南坡	南坡	北坡	北坡	北坡
—————————————————————————————————————	553	669	870.	964	1 132	900	771
雾 日 数	7	15	15	6	15	15	16
起雾的最早时间	3:38	2:00	2:00	7:58	4:50	1:55	0:20
雾消的最晚时间	10:15	11:45	12:20	11:00	13:40	12:53	12:30
起雾的平均时间	5:00	3:50	7:30	8:34	7:05	3:00	2:10
平均持续时间(小时)	2.1	5.1	2.3	1.9	4.3	8.6	8.6
持续最长时间(小时)	3.8	8.2	5.7	3.0	11.0	10.0	11.3

表 3 山地两侧不同高度处雾的时间分布

快向下伸至盆地,并逐渐向山上发展。7时15分景洪盆地贴地层雾消散,但雾顶却继续很快向上发展。 10时25分至10时34分,虽然雾底有所抬升,但雾层厚度仍保持200m。从这次南北坡雾的发展过 程可以清楚看到,北坡雾顶高,雾层厚度达到400m,南坡雾顶低,其厚度约为北坡的一半。雾中能见度 的分布特点是,雾顶雾底能见度较好,雾层的中上部能见度都小于100m。雾消都是先从雾底开始,但在 雾底抬升时,往往雾顶继续向上发展,雾层加厚。因此,西双版纳盆地内经常观测到雾不接地的现象。

2.温度层结特征

辐射雾是由于近地层强烈辐射降温而形成的。一旦雾形成后,地面辐射条件就发生了变化。因而 在雾的形成和发展过程中,近地层温度层结是很不相同的,它表现出一定的变化规律。图2是根据1月 5日17时至1月6日11时景洪站逐时低探资料作出了气温时间剖面图,图中阴影内的雾层是根据汽车 爬山观测得到的(见图1中南坡雾时空分布)。由图可见,1月5日18时以前,大气低层气温是随高度 递减的,由于日落以后近地层气温下降较快,19时起贴地层就出现了明显的逆温结构,并随时间迅速向 上伸展。21时以后,400m以下气层整层逆温,其顶部温度比地面气温高出3-4℃,其中50m以下为最 强逆温层,200-500m为次强逆温层。图中还可看到,随着地面辐射冷却的增强,这一层气 温继续急剧 下降,但各高度降温速度不尽相同,在100m高度处降温最快,降温率超过1℃/h,02时开始,该高度出 现新的逆温结构。到04时,50m处逆温破坏,100m处逆温加强,在时间剖面图上,形成冷槽结构,辐射 雾首先产生于这个高度。以后,雾层迅速向下伸展至地面,雾顶逐渐向上抬升。与此同时,冷槽 随之抬 升,逆温层底上抬到雾顶之上10m左右处。07-08时,250-300m气层降温很快,形成较深厚的冷中

心,雾顶也随之上升到这个高度。这期间虽然雾底离开了地面,但实际雾层大大加厚,是辐射雾的强发 展期。以后低温中心基本保持在原高度,雾顶也无大变化。9时半以后,贴地层气温急增,接着上层气 温也逐渐上升。与此同时,雾底很快上升,而后雾顶下降,直至完全消失。在消散前,逆温层底进入雾顶 下面 20 m 左右处。

根据上述分析,可以将辐射雾的宏观发展过程分为以下四个阶段:

形成阶段,从低空 100 m 处逆温结构形成开始,到逆温显著增强、出现冷槽结构为止。 在这大约 2 个小时的时间里,由于逆温层底降温速率大,空气首先在这里达到饱和,逐渐形成了雾,再向下延伸到地 面。

发展阶段:雾顶辐射冷却明显起来,使雾不断向上发展。随着雾的光学厚度的增加,地面辐射失热 下降,又加上凝结潜热的释放,因而下层气温少变,或者稍有回升。日出(西双版纳1月份08时日出)前 一个小时里,整层空气明显降温,雾顶跃升,并在雾顶处形成强低温中心,雾层厚度达到最大。整个发展 过程4小时左右。

相对稳定阶段:日出之后的两小时里,较深厚的冷气层基本停留在原高度,雾顶无大变化,雾底随 着贴地层气温的升高而有所抬高。

115

消散阶段:随着太阳辐射的增强,近地层气温急增,随之雾底上抬,而后雾顶下降,直至消散完,约 需 2 小时。

3. 雾的微结构特征

三用滴谱仅对雾滴取样,是利用惯性使雾滴沉降在涂有油层的玻璃层上,再放到显微镜下读取雾滴 大小和个数。最小读数为3.5 μm。资料处理时,对全部读数作了捕获系数订正。

1) 雾滴谱的演变

西双版纳地区雾滴谱具有小雾滴数量大(3.5 μm 的小滴约占总雾滴数的 62%),滴谱范围宽(最大 滴直径达 70 μm),雾滴数随其尺度大体按指数律递减等特点。但在雾的宏观发展各个 阶段 中,雾滴谱 分布是不相同的。图 3 给出了在不同阶段观测到的雾滴谱演变实例。由图可见,在形成阶段,谱宽范围 窄,最大滴直径仅 35 μm,而且大滴特少,小滴特多,3.5 μm 的小滴约占 80%。 因此 n(d)随直径 d 的 增大下降很快。这主要是由于连续降温、空气达到饱和时而发生的核化、凝结的结果。 在发展 阶段,随 着雾顶升高,雾层不断加厚,雾内除核化、凝结过程进一步发展外,重力碰并和湍流碰并逐渐增强起来, 致使滴谱范围不断加宽,大滴数增多,小滴数减少。在强发展时(7 时 55 分),峰值直径明显移 向大滴一

边,如图 4 所示,此时数密度(N)有所下降,平均直径(D)和含水量(W)明显增大,能见距离(L)达到最 小值。在相对稳定阶段,雾滴谱拓宽,谱形无大变化,但谱分布仍有起伏(如图 3 中 8 时 45 分 和 9 时 35 分小滴明显增多,9 时 10 分小滴数减少,大滴比例相对增加),数密度(N)与平均直径(D)也出现反向起 伏变化(见图 4)。这是由于这阶段雾顶最高,雾层最厚,重力碰并的路径最长,因而在雾 底出现了最大 滴,从而使谱拓宽,但重力碰并、沉降与核化、凝结过程并不平衡,当雾滴碰并增长,产生 大 滴后,便向地 面沉降,而使大滴减少,含水量减小,然而核化凝结过程的发展又可使小滴数增多,为下次碰并增长准备 条件,导致起伏变化。低层气温迅速升高,雾内相对湿度减小,标志着消散阶段开始,由于 蒸发 过程加 强,大滴数明显减少,谱宽范围变窄(见 10 时 13 分曲线)含水量迅速下降,能见距离很快增大。

2) 主要微物理参数

:	四	X	啟	纲	Ħ

观测	地点	观测日期	资料份数	平均最小 直 径 (μm)	平均最大 直 径 (µm)	算术平均 直 径 (µm)	均平方根 直 径 (µm)	均立方根 直 径 (µm)	数密度 (cm ⁻³)	含水量 (g/m ³)
景	洪	1.3-1.7	8	3.5	51.6	6.8	9.6	13.0	153.0	0.08
勐	养	1.9-1.11	14	4.3	58.8	13.6	16.5	20.2	94.8	0.25
勐	海	1.14-1.15	13	4.6	54.4.	15.4	17.7	20.0	48.5	0.21
成	都				33.0-79.4	4.7-16.1			203.8-959.1	0.24-1.32
舟	山				50.8	18.0-28.0			37.4	0.08-0.15

表 4 雾的微物理参数

在景洪、勐养和勐海观测的雾的微物理参数如表 4 所示。表中还列入了 1985 年春季舟山海雾[1] 和 1985年冬季成都辐射雾[2]的一些数据。由表可见,西双版纳地区雾滴数密度比成都要小得多,这是由于 西双版纳属国家自然保护区,空气较为清洁,空气中凝结核较少所致。但与海雾比较又要偏多一些。 从 雾滴平均直径来看,西双版纳山地雾比舟山海雾要小得多,但比成都雾约大1倍(除成都一次测值1.61 "m以外)。 不论是山区雾、城市雾,还是海雾,其最大直径和含水量都无明显差异。 就西双版纳三个点 而言,位于山地的勐养和勐海站雾滴数密度小,但雾滴尺度和含水量都比较大; 位于盆地的景洪站数密 度大,但其尺度和含水量都比较小。

文 献

[1] 杨中秋、许绍祖、耿骠,舟山地区春季海雾的形成和微物理结构,海洋学报,11,431--438,1989。

[2] 郭恩铭、俞香仁、李炎辉等,双流机场雾宏微观结构研究,全国云物 理 和人工 影响天气 会 议文集, 气象出版社, 1989。

AN OBSERVATION AND ANALYSIS ON THE **RADIATION FOG IN XISHUANGBANNA**

Huang Yusheng Xu Wenrong

(Meteorological Bureau of Yunnan Province, Yunnan)

Li Zihua Fan Ling Huang Wenjuan

(Nanjing Institute of Meteorology, Nanjing)

Abstract

Radiation fog was observed in Jinghong, Mengyang and Mengmai for 28 days from Dec. 26, 1986 to Feb. 18, 1987. A tri-combination dropsize spectrometer was used for sampling fog spectra, and GZW-1 type low altitude radiosondes were used to obtain the vertical temperature profile in the boundary layer. In order to know the distribution of fog and temperature in the mountain region, an observing car was used 77 times along the twisty road between Jinghong and Mengyang to get data, with sampling interval of 1 km. With these observed data and historical records in local meteorologcal stations, the timespace distribution, temperature stratification and microphysical structure of radiation fog in Xishuangbanna have been analyzed, and some important characteristics about the fog's evolution have been obtained.