用模糊聚类分析方法作春季连阴雨预报*

邹 浩 陆善焌 楼世博 陈化成

(上海市气象局)

(上海铁道学院)

为了利用预报因子的模糊信息,进行综合分析,以提高春季连阴雨的预报水平,我们通过对1959—1978年3月16日—5月15日上海连阴雨过程的分析,选取预报因子,试用模糊聚类分析方法,作春季连阴雨逐日短期预报,取得了较好的效果。

1. 春季连阴雨的时段和预报因子

1) 连阴雨的时段

考虑到逐日雨量,日照时数的不同组合,对农作物有不同程度的影响。我们拟定了一个指数,以定义一个"阴雨天",凡"阴雨天"连续四天以上,过程总雨量大于 17 毫米,即作为一个连阴雨过程(具体规定略)。根据嘉定县气象站资料(上海地区基本一致),划分了各年连阴雨的时段,如表 1;

样本 序号	年 份	日 期	持续 天数	总雨 量 (mm)	平均 日照 时数	样本 序号	年 份	日期	持续	总雨量 (mm)	平均日照 財 数
1	1959	5.5-5.17	13	107.9	1.2	*	1968	5.4-5.11	8	44.1	0.9
2	1960	4.9-4.15	7	61.5	1.5	16	1969	4.15-4.21	7	39.2	1.6
3	1960	5.3-5.10	8	58.7	1.7	17	1969	4.24-4.28	5	30.7	1.1
4	1962	4.29-5.4	6	41.4	0.4	18	1970	5.1-5.6	6	81.1	0.3
5	1963	4.18-4.24	7	38.4	0.3	19	1972	3.15-3.20	6	28.9	0.1
6	1963	4.27-5.4	8	62.9	1.3	20	1973	3.29-4.3	6	33.5	0.9
7	1963	5.7-5.16	10	84.4	1.5	21	1973	4.8-4.11	4	52.9	0.0
8	1964	4.3-4.15	13	85.7	2.3	22	1975	4.15-4.19	5	31.8	0.0
9	1965	3.20-3.23	4	34.3	0.3	23	1976	4.17-4.23	7	34.8	3.0
10	1966	4.7-4.10	4	43.4	0.1	24	1977	3.15-3.18	4	24.5	0.8
11	1966	4.21-4.25	5	42.7	0.7	25	1977	4.4-4.9	6	36.7	1.1
12	1967	3.25-3.30	6	64.2	2.7	26	1977	5.1-5.11	11	118.9	1.6
13	1967	4.6-4.10	5	81.9	0.2	27	1978	3.26-3.30	5	26.6	1.5
14	1967	4.14-4.19	6	66.0	1.7	28	1978	4.15-4.23	9	17.9	1.2
15	1968	5.4-5.13	10	58.0	1.1						

表 1 上海春季连阴雨时段

2) 预报因子

根据天气学分析,我们选取了十个因子(均为各次连阴雨 开始前 两天 20 点钟的资料),它们是:

^{*} 该段连阴雨受资料限制,暂不作为聚类样本。

^{*} 本文于1981年1月8日收到,1981年11月4日收到修改稿。

 x_{1} : 500 mb 图上 45° — 65° N, 25° — 65° E 区域内有无 24 小时移速 \leq 5 个 经 度的高压 中心或高压脊。如有, x_{1} 取值为 1,否则为 0。

 x_{2} : 500 mb 图上 30°—45°N,45°—65°E 区域内有无低压或低压 槽 (风向切变)。 如 有, x_{2} 取值为 1,否则为 0。

 x_3 , 500 mb 图上, 浙江省衢县的风向, 如为W—S 风, x_3 取值为 1, 否则为 0。

 x_4 : 500 mb 图上, 南昌、衢县、大陈三个站, 如出现 $H \ge 576$, $\Delta T_{24} \ge 0$, $\Delta H_{24} \ge 0$ 三个条件, 则 x_4 取值为 1, 否则为 0。

 x_5 :地面天气图上, 40° — 55° N, 75° — 100° E 区域内有无冷高压中心,有则 x_5 取 值为 1,否则为 0。

 $x_{6:700}$ mb 图上, 40° —55°N, 75° —100°E 区域内,每 5 个纬距间的温差极大值。

 x_{7} : 700 mb 上海 $(\Delta T_d)_{24}$ 。

 $x_{8:700}$ mb 南昌 $(\Delta T_d)_{24}$ 。

 x_{9} :700 mb 芷江 $(\Delta T_d)_{24}$ 。

 x_{10} ,地面天气图上,上海减成都的气压差。

上述因子中, x_1 、 x_2 是对上游阻塞高压与切断低压活动情况的确定,一般说,阻塞或切断系统都比较稳定,对下游环流形势有重要影响。为了进一步明确东亚环流是否平直,又选取 x_3 ,即地处 29°N 附近的衢县高空风向,以描述东亚大槽是否建立。这三个因子,大致可以反映东亚高空环流的基本特点。选取 x_4 的目的,是要反映江南暖高压脊的活动情况。 x_5 、 x_6 则说明北方冷空气强度。 x_7 、 x_8 、 x_9 是利用西南气流中三个不同 站的 露点变化,以表示江南水汽输送情况。 x_{10} 是根据预报经验选取的,它大致可反 映 850 mb 以下的低层气压场形势。

为了进行模糊聚类分析, x_6 、 x_7 、 x_8 、 x_9 、 x_{10} 诸因子需要用下式进行标准化处理:

 $\overline{X}_i = \frac{x_i - x_{im}}{x_{iM} - x_{im}}$,式中 X_{iM} 、 X_{im} 分别为 x_i 可能取值的上界和下界。 这样,显然有: $0 \le \overline{X}_i \le 1$

于是,我们准备分析的 28 个样本,每个样本 X_k 均为一个 10 维向量,且每个分量的 值为 $0 \le x_{ki} \le 1, i = 1, 2 \cdot \cdot \cdot \cdot 10$ 。

2. 春季连阴雨的两种模糊聚类分析方法

28 个连阴雨样本之间的相似程度是不同的,区分的界限是不清晰的,用模糊聚类分析方法,按其亲近程度进行分类,能比较恰当地反映它们本来的实际情况。

1) 基于模糊等价关系的聚类方法

在[1]中已介绍了这种方法。我们计算不同样本向量间的夹角余弦,由此构成 28×28 阶的模糊关系矩阵。用不同的 λ 水平来截此矩阵,就得到不同的分类。

我们将 1977 年与 1978 年春季的每一天均作为样本,用上述办法进行分类,在尽可能区分连阴雨和非连阴雨的前提下,取 $\lambda=0.94$,用此 λ 将 28 个样本进行分类,结果分得13 类(见表 2)。这表明有 13 种不同类型的春季连阴雨模式。

2) ISODATA 模糊聚类方法

设待分类样本集为:

类 别	样	本	序	몽
I	1, 11,	14, 17, 23,	24, 26;	
I	2, 3;			
II	4, 12,	25;		
\mathbf{N}	5, 20;			
Σ	6;			
ΣΊ	7;			
Y II	8;			
M	9, 28;			
IX	10, 13,	16, 21;		
\mathbf{X}	15;			
XI	18, 19;			
ZII	22;			
XIII	27;			

表 2 Fuzzy 等价关系的聚类结果

$$X = \{X_1, X_2, X_3, \dots, X_n\}$$

每个样本有S个因子,故可写成, $X_i = (x_{i1}, x_{i2}, x_{i3} \cdots, x_{is})$

现要将样本集X分为C类,和通常分类不同,在模糊分类中,每个样本不是清晰地划分到某类,而是按不同的隶属程度隶属于各类。用 u_{ii} 表示第j个样本从属于第i类的隶属程度。于是我们用模糊分类矩阵 $U=[u_{ii}]_{exn}$ 来表示X上的一个模糊分类。U 应满足如下条件:

- (1) $u_i \in [0,1]$ $0 \leq$ 隶属度 ≤ 1 。
- (2) $\sum_{i=1}^{c} u_{i,i} = 1$ 样本隶属度之和为 1。
- (3) $\sum_{i=1}^{n} u_{i,i} > 0$ 每一类不空。

满足上述三个条件的模糊分类矩阵的全体,称之为模糊划分空间,用 M_{10} 表示:

$$M_{fc} = \{U \mid u_{ij} \in [01] \forall i, j; \sum_{i=1}^{c} u_{ij} = 1 \forall j; \sum_{i=1}^{n} u_{ij} > 0 \forall i; \}$$

为了使模糊划分U是合理的,要使泛函:

$$J_m(U,V) = \sum_{k=1}^n \sum_{i=1}^c (u_{ik})^m \| X_k - V_i \|^2 (m > 1)$$

达到最小,式中 $U \in M_{sc}$, V_i ($i=1.2\cdots$, c) 是第 i 类的聚 类中心, $\|\cdot\|$ 是 R^s 空间中任一内积所导出的范数,m 是大于 1 的某一实数。 $J_m(U,V)$,称为目标泛函。为了求出对应的 $U = V \oplus J_m$ 达到最小,可用如下公式及算法:

$$u_{i,k} = \frac{1}{\sum_{j=1}^{c} \left(\frac{\|X_{k} - V_{i}\|}{\|X_{k} - V_{j}\|} \right)^{\left(\frac{2}{m-1}\right)}}$$
 $\forall i,k$ (1)

$$V_{i} = \frac{\sum_{k=1}^{n} (u_{ik})^{m} X_{k}}{\sum_{k=1}^{n} (u_{ik})^{m}}$$
 $\forall i$ (2)

算法如下:

- (1) 任选一组初始分划矩阵 $U \in M_{sc}$ 。
- (2) 据(2)式计算出 Vi。
- (3) 据(1)式计算出 $U^* = (u_{,k}^*)$

 4° 若 $\max_{1 \leq i \leq n} \{|u^*_{ik} - u_{ik}|\} \leq \varepsilon$,则 U^* 即为所求分划矩阵,否则用 U^* 代替 U 回到(2) $^{\circ}$,

进行再一次迭代。 ε 为精度控制数, ε 愈小,所得结果愈精确(通常 ε 取 10^{-3} 、 10^{-4} 等)。

对于已得到的U,我们将U的每一列中隶属度最大的元素取成1,其余均取为0,则得到样本集X的一个清晰分类。

在本问题中 n=28, s=10,取 m=2, c=13 (即有 13 种类型连阴雨天 气模式),范数 $\|\cdot\|$ 由下式确定:

$$\| X_k - V_i \|^2 = \sum_{l=1}^{10} (x_{kl} - v_{il})^2$$

并取模糊等价关系聚类方法所分 13 类作为本方法的初始分类,进行运算,算得的U 如表 $3,V_i$ (略)。

_							-	_									٠.,										
77	6	5	4	4	0	0	0	0	2	91	7	15	90	0	2	64	0	0	4	2	0	63	63	4	86	0	0
6	80	83	3	2	0	0	0	1	1	2	5	10	3	0	1	8	1	1	2	1	0	9	10	3	3	0	1
3	2	2	79	1	0	0	0	0	2	1	61	15	1	0	2	5	0	0	2	2	0	5	5	78	2	0	1
5	3	3	3	86	0	0	0	1	1	2	5	0	2	0	1	8	1	1	86	1	0	9	8	3	3	0	1
0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0
2	3	3	3	2	이	0	0	96	1	1	5	9	1	0	1	3	1	1	2	1	0	3	3	3	1	0	96
6	3	3	7	2	0	0	0	1	92	2	12	47	3	0	92	9	0	0	2	91	0	8	9	7	3	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0
2	3	2	2	2	0	0	0	1	1	1	5	5	1	o	1	3	98	97	2	1	o	3	3	3	1	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0

表 3 ISODATA 模糊聚类所得到的U矩阵(矩阵中每个元素均×100)

称 r, 为第 k 类的聚类半径。

为了运算方便,我们用聚类半径的平方 r^2 作为检算 X_* 是否属于第i类的标准,即若:

$$\|X_k - V_i\|^2 \leqslant r_i^2$$

 X_k 属于第 i 类,反之,则 X_k 不属于第 i 类。

此外,由于历史上的春季连阴雨样本不够多,所得 r_i^2 不能准确的描述该类样本的变

化范围。为此,我们对 r_1^2 作了一些适当的调整,其值如表 4 所示。

	类	别	I	II	ш	IV.	Σ	Ŋ	УII	ZM	X	X	XI.	XII	XIII
	r 2		0.352	0.352	0.352	0.352	0.087	0.087	0.087	0.352	0.607	0.087	0.352	0.087	0.087

表 4 各类半径平方值

3. 预报方法和效果检验

1) 预报方法:

首先将待预报的样本用 x_{10} 进行筛选,如 x_{10} <0 则该样本不参加聚类,可直接预报 未来48小时无连阴雨出现。但若 x_{10} <0 是由于 27° — 33° N, 118° — 122° E 及 27° — 29° N, 122° — 128° E 区域内出现的低压或波动而造成的,则该样本仍需参加聚类。

用模糊等价关系的聚类方法预报连阴雨:将待预报的样本和原连阴 雨样本放在一起进行聚类,经计算机运算得出模糊等价关系矩阵,再用 $\lambda=0.94$ 来进行分类,若待预报样本聚入了某一类连阴雨,就预报有连阴雨,否则预报无连阴雨。

用 ISODATA 模糊聚类方法预报连阴雨, 先求出待预报样本 X^* 与每个聚类中心的距离, 若 X^* 对某个 V. 为 $||||X^*-V_i|||^2 \le r_i^2$, 则预报未来 48 小时前后将开始连阴雨,反之,则预报未来 48 小时无连阴雨。

以上第一种方法,使用时要上机计算,第二种方法,用台式计算机或手算即可进行。

2) 效果检验:

我们将 1979 年 3 月 16 日—5 月 15 日逐日作为独立样本进行试报,结果 3月 29 日—4 月 1 日和 4 月 29 日—5 月 15 日两段连阴雨,都在前 48 小时前后报出,用逐日评定办法,分别计算预报有连阴雨的准确率和预报无连阴雨的准确率,评定结果是,

模糊等价关系方法,预报有连阴雨的准确率为63%,预报无连阴雨的准确率为76%。 ISODATA方法,预报有连阴雨的准确率为80%,预报无连阴雨的准确率为81%。

1980年3月16日—5月15日,用ISODATA方法实际进行了逐日预报,结果预报有连阴雨的准确率为88%,预报无连阴雨的准确率为85%,其中3月28日—3月31日和4月24日—4月29日两段连阴雨,都在前48小时预报出来了。

模糊等价关系方法在 1980 年 3 月 16 日-5 月 15 日中检验效果比 ISODATA 方法差。

参 考 文 献

- [1] 曹鸿兴, 陈国范, 天气过程的模糊划分, 科学通报, 1980年 10期。
- [2] Bezdek, T. C. P. F. Castelaz, Prototype Classification and Feature Selection with Fuzzy Set, IEEE Transactions on Systems, Man, and Cybernetics, Vol SMC-7, No. 2 Feb 1977.